Optimal imaging parameters for fiber-orientation estimation in diffusion MRI.

نویسندگان

  • Daniel C Alexander
  • Gareth J Barker
چکیده

This study uses Monte Carlo simulations to investigate the optimal value of the diffusion weighting factor b for estimating white-matter fiber orientations using diffusion MRI with a standard spherical sampling scheme. We devise an algorithm for determining the optimal echo time, pulse width, and pulse separation in the pulsed-gradient spin-echo sequence for a specific value of b. The Monte Carlo simulations provide an estimate of the optimal value of b for recovering one and two fiber orientations. We show that the optimum is largely independent of the noise level in the measurements and the number of gradient directions and that the optimum depends only weakly on the diffusion anisotropy, the maximum gradient strength, and the spin-spin relaxation time. The optimum depends strongly on the mean diffusivity. In brain tissue, the optima we estimate are in the ranges [0.7, 1.0] x 10(9) s m(-2) and [2.2, 2.8] x 10(9) s m(-2) for the one- and two-fiber cases, respectively. The best b for estimating the fractional anisotropy is slightly higher than for estimating fiber directions in the one-fiber case and slightly lower in the two-fiber case. To estimate Tr(D) in the one-fiber case, the optimal setting is higher still. Simulations suggest that a ratio of high to low b measurements of 5 to 1 is a good compromise for measuring fiber directions and size and shape indices.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Determination of Fiber Direction in High Angular Resolution Diffusion Images using Spherical Harmonics Functions and Wiener Filter

Diffusion tensor imaging (DTI) MRI is a noninvasive imaging method of the cerebral tissues whose fibers directions are not evaluated correctly in the regions of the crossing fibers. For the same reason the high angular resolution diffusion images (HARDI) are used for estimation of the fiber direction in each voxel. One of the main methods to specify the direction of fibers is usage of the spher...

متن کامل

Differentiation of Edematous, Tumoral and Normal Areas of Brain Using Diffusion Tensor and Neurite Orientation Dispersion and Density Imaging

Background: Presurigical planning for glioma tumor resection and radiotherapy treatment require proper delineation of tumoral and peritumoral areas of brain. Diffusion tensor imaging (DTI) is the most common mathematical model applied for diffusion weighted MRI data. Neurite orientation dispersion and density imaging (NODDI) is another mathematical model for DWI data modeling.Objective: We stud...

متن کامل

Diffusion Gradient Calibration Influences the Accuracy of Fibre Orientation Density Function Estimation: Validation by Efficiency Measure

Introduction. Diffusion-weighted (DW) MRI provides important information regarding the arrangement of white matter fibres. However, imperfections in the DW gradients may cause errors in the estimation of diffusion parameters. The sources of the gradient errors are various and may arise from long-term eddy currents, background gradients, imaging gradients, and spatial non-linearity and non-unifo...

متن کامل

Optimal real-time Q-ball imaging using regularized Kalman filtering with incremental orientation sets

Diffusion MRI has become an established research tool for the investigation of tissue structure and orientation. Since its inception, Diffusion MRI has expanded considerably to include a number of variations such as diffusion tensor imaging (DTI), diffusion spectrum imaging (DSI) and Q-ball imaging (QBI). The acquisition and analysis of such data is very challenging due to its complexity. Recen...

متن کامل

Brain Microstructure Mapping from diffusion MRI using Least Squares Variable Separation

We introduce a novel data fitting procedure of multicompartment models for diffusion MRI (dMRI) data of the brain white matter. These biophysical models aim to characterize important microstructure quantities like axonal radius, density and orientations. In order to describe the underlying tissue properties, a variety of models for intra-/extra-axonal diffusion signals have been proposed. Combi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • NeuroImage

دوره 27 2  شماره 

صفحات  -

تاریخ انتشار 2005